β-Elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway
نویسندگان
چکیده
Benign airway stenosis is a clinical challenge because of recurrent granulation tissues. Our previous study proved that a Chinese drug, β-elemene, could effectively inhibit the growth of fibroblasts cultured from hyperplastic human airway granulation tissues, which could slow down the progression of this disease. The purpose of this study is to find out the mechanism. We cultured fibroblasts from normal human airway tissues and human airway granulation tissues. These cells were cultured with 160 ug/ml NS, different doses of β-elemene, or 10 ng/ml canonical Wnt/β-catenin pathway inhibitor (DKK-1). The proliferation rate of cells and the expression of six molecules invoveled in canonical Wnt/β-catenin pathway, Wnt3a, GSK-3β, β-catenin, α-SMA, TGF-β, and Col-I, were measured. At last, we used canonical Wnt/β-catenin pathway activator (LiCl), to further ascertain the mechanism of β-elemene. Canonical Wnt/β-catenin pathway is activated in human airway granulation fibroblasts. β-Elemene didn't affect normal human airway fibroblasts, however had a dose-responsive inhibitive effect on the proliferation and expression of Wnt3a, non-active GSK-3β, β-catenin, α-SMA, TGF-β, and Col-I of human airway granulation fibroblasts. More importantly, it had the same effect on the expression and nuclear translocation of active β-catenin. All these effects were similar to 10 ng/ml DKK-1 and could be attenuated by 10 mM LiCl. Thus, β-elemene inhibits the proliferation of primary human airway granulation fibroblasts by downregulating canonical Wnt/β-catenin pathway. This pathway is possibly a promising target to treat benign tracheobronchial stenosis.
منابع مشابه
Interaction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملAngiopoietin-like protein 8 (betatrophin) may inhibit hepatocellular carcinoma through suppressing of the Wnt signaling pathway
Objective(s): Hepatocellular carcinoma (HCC) is one of the leading fatal neoplasms and the most common primary liver malignancy worldwide. Peptide hormone ANGPTL8 (betatrophin) may act as an important regulator in HCC development through the Wnt/β-catenin pathway. We aimed to evaluate the effects of recombinant ANGPTL8 on Wnt/β-catenin signaling in human liver carcinom...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2018